Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(11): 4293-4306, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37946460

RESUMO

Pd-based materials have received remarkable attention and exhibit excellent H2 sensing performance due to their superior hydrogen storage and catalysis behavior. However, the synergistic effects originated from the decoration of Pd on a metal oxide support to boost the sensing performance are ambiguous, and the deep investigation of metal support interaction (MSI) on the H2 sensing mechanism is still unclear. Here, the model material of Pd nanoparticle-decorated WO3 nanosheet is synthesized, and individual fine structures can be achieved by treating it at different temperatures. Notably, the Pd-WO3-300 materials display superior H2 sensing performance at a low working temperature (110 °C), with a superior sensing response (Ra/Rg = 40.63 to 10 ppm), high sensing selectivity, and anti-interference ability. DFT calculations and detailed structural investigations confirm that the moderate MSI facilitates the generation of high mobility surface O2- (ad) species and a proper ratio of surface Pd0-Pd2+ species, which can significantly boost the desorption of intermediate PdHx species at low temperatures and contribute to enhanced sensing performance. Our work illustrates the effect of MSI on sensing performance and provides insight into the design of advanced sensing materials.


Assuntos
Temperatura Baixa , Hidrogênio , Temperatura , Catálise , Oxigênio
2.
Sci Adv ; 9(8): eadf3495, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827372

RESUMO

The charge transport properties of conjugated polymers are commonly limited by the energetic disorder. Recently, several amorphous conjugated polymers with planar backbone conformations and low energetic disorder have been investigated for applications in field-effect transistors and thermoelectrics. However, there is a lack of strategy to finely tune the interchain π-π contacts of these polymers that severely restricts the energetic disorder of interchain charge transport. Here, we demonstrate that it is feasible to achieve excellent conductivity and thermoelectric performance in polymers based on thiophene-fused benzodifurandione oligo(p-phenylenevinylene) through reducing the crystallization rate of side chains and, in this way, carefully controlling the degree of interchain π-π contacts. N-type (p-type) conductivities of more than 100 S cm-1 (400 S cm-1) and power factors of more than 200 µW m-1 K-2 (100 µW m-1 K-2) were achieved within a single polymer doped by different dopants. It further demonstrated the state-of-the-art power output of the first flexible single-polymer thermoelectric generator.

3.
Inorg Chem ; 61(49): 20026-20034, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36441952

RESUMO

To reasonably design and synthesize metal-organic frameworks (MOFs) with high stability and excellent adsorption/separation performance, the pore configuration and functional sites are very important. Here, we report two structurally similar cluster-based MOFs using a pyridine-modified low-symmetry ligand [H4L = 2,6-bis(2',5'-dicarboxyphenyl)pyridine], [(NH2Me2)2][Co5(L)2(OCH3)2(µ3-OH)2·2DMF]·2DMF·2H2O (1) and [Co5(L)2(µ3-OH)2(H2O)2]·2H2O·4DMF (2). The structures of 1 and 2 are built from Co5 clusters, which have one-dimensional open channels, but their microporous environments are different due to the different ways in which ligands bind to the metals. Both MOFs have extremely high chemical stabilities over a wide pH range (2-12). The two MOFs have similar adsorption capacities of C2H2 (144.0 cm3 g-1 for 1 and 141.3 cm3 g-1 for 2), but 1 has a higher C2H2/CO2 selectivity of 3.5 under ambient conditions. The difference in gas adsorption and separation between the two MOFs has been compared by a breakthrough experiment and theoretical calculation, and the influence of the microporous environment on the gas adsorption and separation performance of MOFs has been further studied.


Assuntos
Estruturas Metalorgânicas , Dióxido de Carbono , Metais , Adsorção
4.
Phys Chem Chem Phys ; 24(46): 28530-28539, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36411969

RESUMO

Metal oxide sensors face the challenge of high response and fast recovery at low operating temperatures for the detection of toxic and flammable hydrogen sulfide (H2S) gases. Herein, novel In-doped ZnO with a sunflower-like structure and tunable surface properties was rationally synthesized. The substitutional In atom in the ZnO crystal can dramatically enhance the concentration of oxygen vacancies (Ov), the In-ZnO sites are responsible for fast recovery, and the formation of sub-stable sulfide intermediates gives rise to the high response towards H2S. As a result, the response of the optimized 4In-ZnO sensor is 3538.36 to 50 ppm H2S at a low operating temperature of 110 °C, which is 106 times higher than that of pristine ZnO. Moreover, the response time and recovery time to 50 ppm H2S are 100 s and 27 s, respectively, with high selectivity and stability. First-principles calculations revealed that 4In-ZnO with rich Ov exhibited higher adsorption energy for the H2S molecule than pristine ZnO, resulting in effortless H2S detection. Our work lays the foundation for the rational design of highly sensitive gas sensors through precise doping of atoms in oxygen-rich vacancies in semiconductor materials.

5.
Phys Chem Chem Phys ; 14(33): 11626-32, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22820954

RESUMO

A fundamental understanding of the properties of various metal/graphene nanostructures is of great importance for realising their potential applications in electronics and spintronics. The electronic and magnetic properties of three metal/graphene adducts (metal = Li, Co or Fe) are investigated using first-principles calculation. It is predicated that the metal/graphene adducts have strong affinity to aromatic molecule 1,2-dichlorobenzene (DCB), and the resultant DCB-metal/graphene sandwich structures are much more stable than the simple DCB/graphene adduct. Importantly, it is found that the adsorption of DCB slightly enhances the magnetic moment of the Co/graphene, but turns the Fe/graphene from magnetic to nonmagnetic. A detailed theoretical explanation of the different magnetic properties of the DCB/Co/graphene and DCB/Fe/graphene is achieved based on their different d-band splitting upon DCB adsorption. In addition, the transport property study indicates that the Fe/graphene is a better sensing material for DCB than the pristine graphene.

6.
Phys Chem Chem Phys ; 13(35): 15882-90, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21822508

RESUMO

The feasibility of employing azulene-like molecules as a new type of high performance substitution-free molecular rectifier has been explored using NEGF-DFT calculation. The electronic transport behaviors of metal-molecule-metal junctions consisting of various azulene-like dithiol molecules are investigated, which reveals that the azulene-like molecules exhibit high conductance and bias-dependent rectification effects. Among all the substitution-free azulene-like structures, cyclohepta[b]cyclopenta[g]naphthalene exhibits the highest rectification ratio, revealing that the all fused aromatic ring structure and an appropriate separation between the pentagon and heptagon rings are essential for achieving both high conductance and high rectification ratio. The rectification ratio can be increased by substituting the pentagon ring with electron-withdrawing group and/or the heptagon ring with electron donating groups. Further increase of the rectification ratio may also be obtained by lithium adsorption on the pentagon ring. This work reveals that azulene-like molecules may be used as a new class of highly conductive unimolecular rectifiers.

7.
J Nanosci Nanotechnol ; 10(11): 7347-50, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21137931

RESUMO

Using the density functional theory, the interactions between pristine, Stone-Wales defected graphenes (SW-graphene) and two small gas molecules (NH3 and NO2) were investigated and the potential applications of SW-graphene as gas sensors were exploited. Both NH3 and NO2 show weak interactions with pristine graphene. Introducing SW defect into the graphene structure has little effect on the NH3 adsorption, but dramatically enhances the adsorption of NO2 and causes significant deformation of the graphene sheet around the defect site. The strong interaction between NO2 and the SW-graphene also induces dramatic changes to the graphene's electronic structure. This work reveals that the SW-graphene could be an excellent candidate as highly selective sensing material for NO2.

8.
Nanotechnology ; 21(6): 065201, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20057033

RESUMO

Using density functional theory and nonequilibrium Green's function (NEGF) formalism, we have theoretically investigated the binding of organic donor, acceptor and metal atoms on graphene sheets, and revealed the effects of the different noncovalent functionalizations on the electronic structure and transport properties of graphene. The adsorptions of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and tetrathiafulvalene (TTF) induce hybridization between the molecular levels and the graphene valence bands, and transform the zero-gap semiconducting graphene into a metallic graphene. However, the current versus voltage (I-V) simulation indicates that the noncovalent modifications by organic molecules are not sufficient to significantly alter the transport property of the graphene for sensing applications. We found that the molecule/graphene interaction could be dramatically enhanced by introducing metal atoms to construct molecule/metal/graphene sandwich structures. A chemical sensor based on iron modified graphene shows a sensitivity two orders of magnitude higher than that of pristine graphene. The results of this work could help to design novel graphene-based sensing or switching devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...